понедельник, 14 сентября 2009 г.

Теорема Чевы. Простое доказательство и широкая применимость.


Помню, в школе мы доказывали, что медианы треугольника пересекаются в одной точке. И что биссектрисы треугольника пересекаются в одной точке. Более того, высоты и серединные перпендикуляры треугольника тоже обладают тем же свойством.
Вот только доказывались эти теоремы.... как? Да в том-то и дело, что каждая из них доказывалась как-то по-своему, у каждой из них был свой способ.

Я хочу показать вам, дорогие читатели, единый способ доказательства этих теорем. Доказательства, использующего теорему Чевы.
Вот её формулировка:

Пусть точки A',B',C' лежат на прямых BC,CA,AB треугольника \triangle ABC. Прямые AA',BB',CC' пересекаются в одной точке тогда и только тогда, когда

\frac{BA'}{A'C}\cdot \frac{CB'}{B'A}\cdot \frac{AC'}{C'B}=1
Прежде чем перейти к доказательству, замечу, что равенство в формулировке не такое уж заумное и трудно запоминающееся, как может показаться на первый взгляд. Действительно, чтобы получить это равенство, нам достаточно выбрать произвольную вершину треугольника, например, B, и начать обходить треугольник по часовой стрелке. Обойдя треугольник, мы пройдём по каждому из отрезков как раз в той последовательности, в которой они встречаются в равенстве.

Доказательство.

Прямая теорема.

С одной стороны,
SAOB'/SCOB' =AB'/B'C
С другой стороны, это же отношение площадей равно отношению высот треугольников AOB' и COB', проведенных к основанию OB', равно как и отношение площадей треугольников AOB и COB.

Таким образом, AB'/B'C = SAOB/SCOB.

Записав аналогичные равенства для отношений CA'/A'B и AC'/C'B и затем перемножив их всех, получим требуемое утверждение.

Обратная теорема.

Итак, допустим, у нас выбраны точки A', B', C' на сторонах треугольника и выполняется равенство из условия.
Пусть AA' и BB' пересекаются в точке О. Проведем прямую СО и пусть она пересекает сторону AB в некоторой точке C''. Тогда, согласно прямой теореме, у нас будет выполняться то самое огромное равенство, в котором вместо точки C' будет точка C''. Исходя из выполнения этих двух равенств - с точкой C'', как мы показали, и с точкой C' из условия обратной теоремы, делаем вывод, что точки C'' и C' совпадают.


Можно записать условие Чевы в форме синусов:
\frac{\sin\angle BAA'}{\sin\angle A'AC}\cdot\frac{\sin\angle ACC'}{\sin\angle C'CB}\cdot\frac{\sin\angle CBB'}{\sin\angle B'BA}=1.
Это условие легко получить, применив теорему синусов к треугольникам ABA' и ACA'. Для них получаем A'B/AA'= sinBAA' /sinABA' и A'C/AA'=sinA'AC/sinA'CA. Разделив одно равенство на другое, получаем A'B/A'C=sinBAA' /sinA'AC * (sinBCA/sinABC )

Записав аналогичные равенство для остальных отрезков и перемножив их, получаем условие Чевы в форме синусов.



Согласно теореме Чевы, то, пересечение медиан треугольника в одной точке - доказывается в одну строчку.
Согласно теореме Чевы в форме синусов, пересечение биссектрис в одной точке доказывается в одну строчку.
А вот доказательство того, что высоты треугольника пересекаются в одной точке - это, согласно теореме Чевы в форме синусов, доказывается в две строчки. В первой строчке доказательства нам следует написать известное тригонометрическое тождество -
sin(90 - a) = cos a

6 комментариев:

  1. Гм, постом выше Вы описали вкратце теорию масс. Теорему Чевы можно просто доказать, разместив в вершинах единичные массы. Аналогично с точностью до масс решаются и остальные задачи - о пересечении биссектрис, высот и срединных перпендикуляров.

    ОтветитьУдалить
  2. Хм, интересное замечание :)
    Только не сходу соображу - как?

    ОтветитьУдалить
  3. Про медианы:

    1. Разместим в вершинах треугольника ABC единичные массы.
    2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
    (запутанно получилось)
    3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
    4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

    Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

    ОтветитьУдалить
  4. Евгений, но ведь это доказательство того, что медианы треугольника пересекаются в одной точке, а не доказательство теоремы Чевы.

    ОтветитьУдалить
  5. Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
    Прямые AA1 и CC1 пересекаются в точке O; AC1 : C1B = p и BA1 : A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1 : B1A = 1 : pq.
    Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1 : B1C = pq : 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1 : B1C.

    ОтветитьУдалить